Regulation of postsynaptic structure and function by an A-kinase anchoring protein-membrane-associated guanylate kinase scaffolding complex.
نویسندگان
چکیده
A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPARs) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNA interference knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area, or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 in which the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment.
منابع مشابه
Regulation of A-kinase anchoring protein 79/150-cAMP-dependent protein kinase postsynaptic targeting by NMDA receptor activation of calcineurin and remodeling of dendritic actin.
At the postsynaptic membrane of glutamatergic synapses, the cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and calcineurin (CaN) anchoring protein AKAP79/150 is recruited to NMDA and AMPA glutamate receptors by postsynaptic density (PSD)-95 family membrane-associated guanylate kinase (MAGUK) scaffold proteins. These signaling scaffold complexes may function to regulate receptor ph...
متن کاملAnchoring proteins confer G protein sensitivity to an inward-rectifier K(+) channel through the GK domain.
Anchoring proteins cluster receptors and ion channels at postsynaptic membranes in the brain. They also act as scaffolds for intracellular signaling molecules including synGAP and NO synthase. Here we report a new function for intracellular anchoring proteins: the regulation of synaptic ion channel function. A neuronal G protein-gated inwardly rectifying K(+) channel, Kir3.2c, can not be activa...
متن کاملTranssynaptic signaling by postsynaptic synapse-associated protein 97.
The molecular mechanisms by which postsynaptic modifications lead to precisely coordinated changes in presynaptic structure and function are primarily unknown. To address this issue, we examined the presynaptic consequences of postsynaptic expression of members of the membrane-associated guanylate kinase family of synaptic scaffolding proteins. Postsynaptic expression of synapse-associated prot...
متن کاملRegulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression.
Second messengers regulate synaptic plasticity by influencing the balance between kinase and phosphatase activity. One target of this balance is the phosphorylation state of the AMPA receptor glutamate receptor 1 (GluR1) subunit. Hippocampal long-term depression (LTD) is a calcium-dependent downregulation of synaptic AMPA receptor currents associated with dephosphorylation of Ser845, a cAMP-dep...
متن کاملStructural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains.
CASK is a member of the membrane-associated guanylate kinases (MAGUK) homologs, a family of proteins that scaffold protein complexes at particular regions of the plasma membrane by utilizing multiple protein-binding domains. The GK domain of MAGUKs, which shares high similarity in amino acid sequence with yeast guanylate kinase (yGMPK), is the least characterized MAGUK domain both in structure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 24 شماره
صفحات -
تاریخ انتشار 2009